How long is the lifetime of Librem 5?

Quotation from Librem 5 crowd funding promotion page :

“When you purchase a Librem 5, you can be confident that we will continue to provide security updates, privacy improvements, bug fixes, and new features… for the lifetime of your device”

How long is the intended lifetime of Librem 5 for continued software support
(security updates, privacy improvements, bug fixes, new features, etc )

In other words :
Is there a specific time frame to which Purism is committed to provide
the abovesaid continued support ?


Possible duplicate:

In general, if Purism does not go bankrupt, expect 5 to 50 years :wink:


I think you can expect a very long support, something between 5 years and forever. :smile:


Even if Purism would go bankrupt, the phone will get security updates from Debian. So, untill the hardware dies, it will be usable and safe.


That assumes people continue to fix issues out of the goodness of their hearts for issues outside of the core OS (like a bug that is found in say the driver/firmware of the cellular modem). This also glosses over the “new features” part of purism’s statement.

While I do think this is possible the community will keep patches, fixes, etc coming indefinitely; I don’t think it is unreasonable for purism to define “lifetime” as that matters for understanding how long new features will be officially supported on old hardware. I wouldn’t want the lifetime to be 50 years because then there is an expectation that new developments will work on 50 year old hardware and limiting new features today to the hardware limit of the 386 is a bit unreasonable.


so if i pay a hacker-friend to do it for me that means he will do it “out of the goodness of his heart” ?

1 Like

If Purism goes bankrupt or stops releasing updates after 5 years, I fully expect that a Debian group or another community project will appear to carry on support. Look at what happened with the Nokia N900 released in 2009, which is still supported by and evolving with Maemo Leste. There is an unofficial ROM of LineageOS 16.0 (Android 9.0 Pie) for the Galaxy S II released in 2011 and official one for the LG G2 from 2013.

We are can count on updates to Linux / Wayland+Weston / GTK / GNOME libraries, even if Purism disappears. I think that it is likely that many GTK applications are going to adopt libhandy and that GNOME will carry on the development of libhandy, phosh, phoc, Calls, Squeekboard, Chatty, etc. because GNOME needs a way to go mobile and Purism has provided GNOME with the easiest path to get there.

Since Purism is partnering with GNOME and upstreaming its code and making convergence with desktop GTK applications possible, I really doubt that GNOME will decide to reinvent the wheel and go a different path with mobile phones. The companies that pay GNOME developers, such as Red Hat, SUSE and Canonical, have no mobile plans and no desire to compete with Purism, so phosh is likely to be accepted as GNOME’s official mobile shell.

In addition, the KDE Plasma Mobile developers are likely to support many of the Librem 5 apps, such as Chatty, Calls and Squeekboard, because they are designed to work with both Qt/KDE and GTK/GNOME libraries.

NXP is committed to producing the i.MX 8M for the next 9 years, which means that the NXP engineers are likely to continue providing updates to the Linux kernel for the next 9 years, since its ability to run on mainline Linux is one of the chip’s selling points. The real question is what happens to the Linux drivers for other components, such as the USB driver for the Gemalto PLS8, SDIO 2.0 driver for the Redpine Signals RS9116, the I2C drivers for the TSmicroelectronics GNSS and Vishay proximity and light sensors, etc. They might require changes due to new security threats, new Linux kernels or updated firmware in these components.

I’m not too worried about the software. I fully expect it to be supported for a long time even if Purism goes bankrupt. The real issue is the hardware and whether we will be able to fix the Librem 5 if it breaks. Hopefully, Purism will choose a battery and display which is used by other phones, so we can find replacements. If Purism releases the Gerber files for the Librem 5 in “3 years, 5 years, something like that,” as Todd Weaver said in this interview, then the community can potentially 3D print the plastic parts, and third-party companies can create replacement motherboards for the Librem 5, so we might be able to get parts far into the future.


i think that “How long is the lifetime of Librem 5?” is a perfectly justified question and i’m glad you asked HERE.

i also think that each of the replies to the OPs question has more/less covered a side of the story but we also need to remember that free-software “COMES WITH ABOLUTELY NO WARANTY”. Purism is an SPC and we are a community of hardware/software OWNERS (more or less) this means that this particular hardware iteration will last and be supported as long as somebody/somewhere is willing to keep investing SOMETHING in it.

it’s really hard to come up with numbers like 5-10-50-years when nobody knows for sure what tommorow brings but we can speculate that the L5s will have a longer life span that ANY proprietary device out there.

i mean i for one am definately interested in a second iteration (that’l be what ? 3 years from when the first lands ?) but somebody/somewhere will probably keep using this first iteration (if not me).

unless minimum software requirements skyroket there will probably be a fair share of users who will keep using the first and second iterations for at least 7 years (but who will stop you from installing lower requirements and more efficient software when the new one gets bloated ? < looking at you Gnome

it’s much to say here but the jist of it is that unlike with proprietary shit you get to DECIDE how much you are willing to push or strip down this thing … there’ll probably be like some crazy SciFi thread in which users will post screenshots of their custom tuned L5s … or something like “pay me to turbo-boost your L5” :wink:

1 Like

answered your own question?

Indeed (it is a complete sentence…:wink:)

I would like to continue on the topic to another direction: sustainability and DIY fixing hardware

I think this should be thought - at this point already - beyond Q3 delivery: the lifetime / lifecycle of the phone. The benefits from the software side make it possible to keep the phone patched, updated and usable (in theory at least) longer than most. But at some point some hardware will brake, some will die permanently and some will become discarded for various reasons (better Librem models, hopefully).

Longevity is a nice bonus on top of privacy and other aspects: it benefits the environment. No need to purchase a new phone as often. The electronics use a lot of rare minerals (some are mined in less environmentally and socially sustainable ways), their manufacturing takes energy and produces emissions. The longer a phone can be used, the better.

Another thing that could be considered green aspect here is Purism saving on travel when using a distributed organization model. Changeable battery is good too. But there are sustainability considerations that are not yet clear and could possibly still be decided (although some may already be in the works). I have two opinions / ideas (more should be suggested), of which the second is related to this topic.

1: Packaging: minimal the better, recycled paper/pulp preferred. I hate it when packages are protectively packaged and have an additional plastic wrapping on to of that - it’s just wasteful. From security/trust perspective some basic tamper evident stickers might be in order though. No printed manuals, just “quick start” and an URL to wiki or pdf - kills less trees. Etc.

2: DIY fixing and modification: a direct stance supporting it - a policy even - would be good. Since Purism isn’t a global brand (yet?), any broken hardware has to be fixed by DIY or some third party shop. It would help to have for instance spare screens available from shop and/or specs for alternatives, as screens are the ones most often damaged. To be able to do DIY, the final phone would need to be built in way that allows for dis-assembly - careful use of adhesive (there is a difference if it’s glue or an adhesive film that can be replaced) if screws are not a option. It would be nice to have good measurements or even a ready STL-file to 3D-print cases (protective, decorative etc.) as there probably won’t be a huge offering for a small number of phones. A library of how-to’s for anything that can be done. Etc.

These all prolong the general lifetime of Librem phones. DIY/lifetime aspect as well as environmental aspect should both be addressed - “lifecycle management” description or a full EMS. Some of these details probably have been in the backs of many minds but haven’t been written down and made public yet. I think they should be - they are simple measure to add value for all. Being considerate in these is good business in the long run (or so I’m told -

Apologies for the length of the post.


not long apparently because we can’t have 5G with it and that’s a HUGE problem

Regarding point 1, for a run of several thousand phones at the most, the packaging and whether or not a manual is included isn’t going to have a significant environmental impact. Keeping the phones running as long as possible is going to be far more effective at being environmentally friendly.

For point 2, we should be getting the full schematic of the phone at its release, which will enable user replacement of most components. I’m sure within the first several months there will be DIY guides on how to replace a cracked screen and how to switch a modem will be posted to the forum. Beyond that, the hardware reference page will hopefully be updated with detailed information on the hardware in the Librem 5 once it’s released.


4g lte will still work though no ?

It’s not huge impact if compared to something big, but the point of all corporate sustainability efforts are to aim for the best / most suitable solution. They add up.

It’s good to hear that there is something available. My hope is, that there’d be effort, and purpose to support this more - not just wishes to community. I’m trying to dangle the business aspect as bait, as benefits are not just for us.

And while 5G (and maybe Wifi ac) would have been nice futureproofing, we’ll have plenty for several years. I can already imagine scratching my head in 2040 at the nurcinghome, where I’ve hidden my repurposed mini-webserver… :wink:

1 Like

Given that 5G won’t function outside most cities due to the high cost of implementing it, I think that we can count on 4G LTE being used for the next two decades. A number of companies are currently investing in advanced forms of LTE, that frankly makes a lot more sense than 5G in my opinion.

Considering that 2G GSM is just now being retired and it was first introduced in 1991 in Finland, I don’t think that we have anything to worry about.

About 80% of the total greenhouse gas emissions for a phone lie in its initial fabrication and shipping to point of sale. If the Librem 5 lasts 5+ years, it can be a more environmental phone than the typical Android phone that only lasts 2-3 years, if you keep using it or resell it when you no longer want it. Given the Librem 5’s unique features and its rarity, I expect that it will have a better resale value than even iPhones and Galaxy S’s and the market for used smartphones is rapidly expanding, so a long lifespan is likely.

However, the Librem 5 probably won’t be a very environmental phone, because it will take more energy and resources to create it than a normal phone. It will have separate chips for its cellular baseband, GNSS, Wi-Fi/Bluetooth, conversion to HDMI/DisplayPort Alt Mode (maybe?), digital signal processing for the camera (maybe?), and fast charging, which a normal phone has in a single SoC whose die size measures about 70 mm2 in a mid-range phone and 90mm2 in a flagship. In contrast, the Librem 5 will probably need 250-300 mm2 of silicon to implement the same functionality in different chips, plus it needs a big heat spreader in the cellular modem, an M.2 slot and a smartcard reader. All of these factors will increase the environmental costs of producing the Librem 5. On the other hand, the smaller amount of DRAM and Flash in the Librem 5 will decrease that cost to some degree, but not that much.

In addition, the Librem 5 will require more frequent charging because its SoC isn’t that energy efficient and having lots of separate chips consumes more energy. However, the operational energy usually isn’t that big of a factor.

On the other hand, the Librem 5 won’t be constantly connecting to Google servers like the typical Android phone (and even the typical iPhone) and consuming as much energy in the network. The energy to operate an Android phone is about 1/5th of the energy to operate the network and servers that feed a phone its data, so not constantly sending information to Google and other online servers is very important environmentally.

The question is how to weigh all these factors. I sat down and tried to guesstimate them:

If my assumptions are correct, then the Librem 5 has a higher carbon footprint than other types of phones if it only lasts 3 years. If it lasts 5 years then its footprint is between a mid-range and a flagship Android phone. If it lasts 7 years, then it is the most environmental phone.


@amosbatto Very nice! :slight_smile:

The spreadsheet idoes make great assumptions - which can be either way - and I hope at some point we/someone can go deeper into them. Actual measurements as basis of extrapolated values after we get the phone would be nice. Logistics and production chain info would be a nice addition after release (as probably not a concernt right now) as they make a big chunk of the whole. Etc.

I’m very interested in your methodology.
How did you get to CO2-e? Some website?
Is the “lifespan (years)” for how long first user uses the phone or how long the phone is in use (second hand)? Because the average lifetime seems to be around 5 years ( and that would be a good reference point to show with androids too.
The “1/5” network energy is a good point. Is you estimate just the background network & surveilance/service or do you also include user activity with cloud, streaming and searches etc. - I am assuming that L5 might use less cloud intensive as well as more local apps (again, something that needs to be measured, profiled)? (
Could the operating energy surprise us, or possibly get better after optimization over time?
The estimate is for an entire production batch, where larger quantities benefit from in most issues. However, the lifespan here doesn’t seem to take into account that L5 differs from those others with the likelyhood of how many of the batch are useable after a time (system is updated, battery can be replaced etc.). If a larger portion of the batch is useable, that should be counted as benefit for L5 in general (individual phones may vary).

I tried visualizing your spreadsheet and the first is straight up usage but the next is more interesting, as it takes into account lifetime, or rather spreads the CO2-e over time [(production/year)+(operating+emission x year)].

It doesn’t even look that bad for L5 in a few years! :slight_smile: And this is even before any tweaks or enhancements to data or phone. There is almost enough here to utter “linux phone is green(er) design” :wink:
(Sorry about the “assumptions”, but I didn’t want to give the wrong impression to anyone if these spread)

If I may ask, and you have the inclination, could you maybe share your calculations on a spreadsheet, where new data could (hopefully) be updated/tested later?

1 Like

I think lithium secondary cells and charging circuitry are so ubiquitous and standardised that it should be easily possible to source a battery of a suitable physical size, chemistry and pack voltage for at least the next decade. The only hitch might be if the connector is non-standard, then you would have to scavenge the connector off of the old battery.

Worst case scenario: some kind of graphene supercapacitor nanotubular fuel bells and whistles hydromabob comes out and lithium cells become obsolete and gradually stop being available. You have to hack together an adapter board to make one of these newfangled power sources work inside your 30 year old Librem 5 v1. (By now it’s had two new modems and seven battery replacements, and its computing power pales in comparison to the Librem Strap v12 quantum smartband, but you’re nostalgic for 2019, when we could walk outside without breathing apparatus and pigeons were mostly harmless.)


Really cool graphs that you made. I don’t have my spreadsheet file on this PC, but I will upload it when I have a chance.

If you read the scientific literature, you will find huge variations in the estimates of GHG emissions. I think that most studies have underestimated the GHG emissions, because they don’t do a detailed analysis of the materials and processes of IC and LCD production. The best studies were the ones by Eric Williams on DRAM production and a typical desktop PC in 2000 with a Pentium III CPU and 17 inch CRT monitor. Williams looked at some of the chemicals and the processes to purify them for use in a fab, and then looked at economic activity to estimate the rest of the chemicals where he didn’t have information, but his work is very outdated and the energy, water and chemical consumption have fallen, since fabs have gotten a lot more efficient over time and there has been a switch to renewable energy by some of the IC and LCD fabs.

Apple and Fairphone are the only electronics manufacturers who release GHG emission estimates on their devices. The Fairphone estimates are frankly baloney, and clearly don’t account for very much in the manufacturing process. Apple is not transparent at all, but the estimates from Apple used to be reliable in my opinion until the iPhone 6, when Apple realized that its rising emissions would be a PR problem. As smartphones have gotten bigger in screen size and battery size and their cameras and SoC’s have gotten more advanced, their emissions have gotten much higher, but Apple didn’t want to admit this.

Then, Apple embarked on a PR campaign to say that it was switching to 100% renewable energy and it had cut its emissions in half, which was a lot of greenwashing. Most of the emissions for Apple devices happen at its suppliers and assemblers in Asia (Samsung, TSMC, Foxconn, etc.) where most of the energy comes from burning coal and that doesn’t change in a year or two like Apple claimed. However, Apple has been leaning on its suppliers to use more renewable energy, so Apple does deserve some credit, but I still think that Apple is seriously underestimating the emissions for PR reasons.

At any rate, Apple estimates that its iPhone Xs emits 70 kg CO2-e for the 64GB model and 99 kg for the 512GB model (so 0.07 kg per extra GB of Flash memory) and 77 kg for the iPhone Xs Max with 64GB (so 0.38 kg per extra cm2 of screen). For the iPhone Xs 64GB, Apple estimates that 81% of GHG emissions (56.7kg) come from production of the phone, 3% (2.1 kg) from transport, 15% (10.5 kg) from usage for 3 years and 1% (0.7 kg) from recycling. I distrust all of Apple’s current estimates since Apple has turned environmentalism into a PR game, but I find how the emissions were rising up to the iPhone 6 very interesting:


Most of the LCA studies are like Ercan (2013)'s study of the Xperia T (4.55" screen, 139 g), which estimates 70% of GHG emissions (34.5 kg) for production, 10% (5.0 kg) for transportation, 18% (9.5 kg) for usage and 2% (1.0 kg) for end of life. Then, these studies are multiplied by 1.5 billion smartphones per year for annual global smartphone emissions.

I think that these studies are dramatically underestimating the production emissions, because as Williams shows they aren’t capturing all the activities that are needed to produce ICs, LCDs and batteries, so standard process-sum methodology in LCA studies doesn’t work very well for electronics. The amount of energy and resources to purify metals, chemicals, water and air for use in silicon and LCD fabs is enormous and a lot of the chemical purification happens outside the fab, so you can’t just look at the fab operations and you can’t just look at what it takes to produce standard copper to estimate energy and resources to produce the copper used in an IC, since it is much purer. You also have to keep in mind that the average phone screen has grown from 50-60 to 80-100 cm2 in size, and the battery has grown from 2000-2500 to 3000-4000 mAh over the last 5 years and the weight has increased from 120-150 to 170-210 grams. Fabricating components such as camera sensors and digital/image signal processors have a higher environmental impact than they did 5 years ago because the expectations for smartphone quality has risen over time.

For these reasons, I’m estimating 80 kg for a mid-range Android phone and 130 kg for a flagship Android phone, and then adjusting it to 180 kg for the Librem 5, since I guesstimate that it will have 2.5 times more silicon die area and 2 times more circuit board area than the typical phone, and those components form the majority of GHG emissions.

One thing that I know that I got wrong in my previous post is the emissions from operating a smartphone. Even if we assume that the Librem 5 will use 80% of its battery per day, here is what I calculate will be the GHG emissions to charge the Librem 5 for a year:

GHG emissions to charge the Librem 5
Battery (mAh) 3500
Battery (Wh) (assume 3.8V) 13.3
80% battery consumed per day (Wh) 10.6
“ with 12% DC loss charging battery (Wh) 12.1
“ with 27% AC-DC adapter loss (Wh) 16.6
Energy when not charging (W) 0.02
22 hours per day when not charging (Wh) 0.44
Total per day (Wh) 17.0
“ with 5% transmission line loss (Wh) 17.9
Yearly AC power (kWh) 6.5
Yearly kg CO2-e (if 0.6 kg CO2-e / kWh) 3.9

I’m assuming that the Librem 5 uses the same type of battery as the Galaxy On5 which is 3.8V. I was surprised how little energy it takes to charge smartphones, compared to running other things. The average Android phone is probably more energy efficient than the Librem 5 and only uses 60% of its battery per day.

I overestimated the charging energy because today’s fast charging, larger batteries and larger screens have upped the energy consumption. Fast charging is less energy-efficient that slow charging because more of the energy is lost in heat and fast charging generates more resistance in the battery. However, when I do the calculations, I find that the energy to charge smartphones still isn’t that much, even with today’s 15 and 18 watt chargers.

The network energy estimates vary a lot too. Belkhir and Elmeligi (2018) have much higher estimates than Malmodin and Lunden (2018). I tend to think that the real amount is between these two estimates. Malmodin and Lunden seem to consistently underestimate emissions, but Belkhir and Elmeligi don’t seem to be taking into account growing energy efficiency and the switch to renewables in their estimates of network energy.

A 5 year lifespan for mobile phones is very different from the average of the reputable studies whose median value is a little over 2 years:

The Consumer Electronics Association survey (since changed their name to the CTA) is poor methodology because people often expect devices to last longer than they do. People don’t expect their phones to break, but a sizable portion get cracked screens, get dropped in liquid, have the battery die, get stolen, etc. or people switch carriers or move and their old phone isn’t compatible. The Yale study also doesn’t take into account that the vast majority of phones never get resold as used phones. In 2017, there were 140 million used smartphones sold in 2017, compared to 1536.5 million new smartphones, so only 9% of smartphones got resold as used (although that percentage is rising). In other words, the Yale study only looks at the 9% of phones that get sold as used, so it is ignoring all the phones that were damaged, were stored or became functionally obsolete. It is mainly focusing on high-end models, such as the iPhone and Galaxy S series, that are more likely to retain their value over time and be resold as used phones, but that isn’t a representative sample of all smartphones.

The most accurate way to measure average lifespans of smartphones in my opinion is the data from Kantar WorldPanel, because it compares annual smartphone sales to the total number of cellular phone subscriptions in each country to determine how often people upgrade their phone:


A sizable percentage of phones get damaged. The charge capacity of lithium ion batteries start degrading rapidly after 500 100% depth of discard cycles, and over 90% of current cell phone models do not have replaceable batteries. The majority of old cell phones get stored because the owner buys an newer phone or changes the cellular provider, but keeps the old phone as a backup.

9% of old smartphones will be resold and 11% of mobile phones get recycled, so the majority of old phones are stored and not reused. I have a smartphone from 2011 and a feature phone from 2008 sitting in my desk which still work, but I haven’t used them in years, so I don’t know how I would answer a survey that asked me how long I expect my mobile phone to last. I might say 8 years since my 2011 smartphone still works, but the reality is that I have gotten a new phone every 3 years, which is why we can’t trust the CTA survey results, in my opinion.


One more point that I forgot to add. There are three critical factors that will affect the lifespan of the Librem 5:

  1. Availability of protective cases
  2. Availability of replacement screens
  3. Availability of replacement batteries

Cracked screens represent the majority of repairs for smartphones. Replacement batteries are critical for extending the lifetime.

A second point to consider is that “green” electronics which eliminates hazardous substances usually have a higher environmental footprint in fabrication. Energy-efficient electronics also often has a higher environmental footprint in fabrication, so the only way to make environmental electronics is to make electronics that lasts a long time, meaning that it has to be easy to repair and upgrade over time, which is the opposite of modern smartphone design.

For example, plastic parts without PVC, plastic wire insulation without PVC and phthalates, lead-free solder and circuit boards without brominated flame retardants all have higher carbon footprints. SSD fabrication has a higher carbon footprint than HDD fabrication. Using LCDs instead of CRT monitors is more energy efficient and eliminates a lot of toxins found in CRTs, but LCD fabrication has a very high carbon footprint. Smaller line widths in silicon fabs make for more energy-efficient ICs, but a cutting-edge 5nm fab will cost around $15 billion to build. It isn’t clear to me whether it is more environmental to keep using an old 28nm fab and a planar process which requires fewer processing steps or build a new fab with a cutting-edge FinFET 5-7 nm process that uses quad patterning and requires a lot more resources, but contains over 100 million transistors per square mm.